Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Noor Azilah M. Kasim, Aulia Akbari and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.133$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Acetyl-4-methyl-2-(2-fluorophenylamino)-1,3-thiazole

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{FOS}$, is essentially planar, with a maximum deviation of 0.127 (3) \AA for the C atom of the methyl group attached to the thiazole ring. The structure is stabilized by intra- and intermolecular hydrogen bonds to form one-dimensional polymeric chains parallel to the b axis.

Comment

The title compound, (I), is isostructural with 5-acetyl-4-methyl-2-(o-toluidinyl)-1,3-thiazole (Yamin et al., 2005), except that the F atom is bonded at the ortho position of the phenylamino fragment. The whole molecule is essentially planar, with a maximum deviation for atom C12 of 0.127 (3) \AA from the least-squares plane; in the molecule of 5-acetyl-4-methyl-2-(o-toluidinyl)-1,3-thiazole, the benzene group is inclined to the thiazole ring by $73.44(10)^{\circ}$. All bond lengths and angles are in normal ranges (Allen et al., 1987) and are comparable with those in the analogue.

(I)

There are weak intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 1, \mathrm{C} 10-$ $\mathrm{H} 10 B \cdots \mathrm{O} 1$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$ hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by inter-

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids.

Received 16 September 2005 Accepted 22 September 2005 Online 30 September 2005
\qquad

Figure 2
A packing diagram for (I), viewed down the b axis. Dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds.
molecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{F} 1^{\mathrm{ii}}$ hydrogen bonds (symmetry codes as in Table 2) to form one-dimensional zigzag polymeric chains parallel to the b axis (Fig. 2).

Experimental

A solution of o-fluoroaniline $(1.11 \mathrm{~g}, 0.01 \mathrm{~mol})$ in acetone $(50 \mathrm{ml})$ was added dropwise to an acetone solution (50 ml) containing an equimolar amount of 3-chloroacetylacetone and ammonium thiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 2 h . The light-yellow solution was filtered off and colourless crystals of (I) were obtained after evaporation over a period of 5 d (yield 85%; m.p. 447.8-449.3 K).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{OS}$
$M_{r}=250.29$
Monoclinic, $P 2_{1} / c$
$a=5.0205$ (11) A
$b=13.081$ (3) \AA
$c=17.598$ (4) \AA
$\beta=97.085(4)^{\circ}$
$V=1146.9(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
 ω scans
 Absorption correction: multi-scan
 (SADABS; Bruker, 2000)
 $T_{\text {min }}=0.889, T_{\text {max }}=0.954$
 6015 measured reflections

$D_{x}=1.450 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2840 reflections
$\theta=1.9-26.5^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.43 \times 0.28 \times 0.17 \mathrm{~mm}$

2115 independent reflections
1931 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-6 \rightarrow 5$
$k=-15 \rightarrow 13$
$l=-13 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.133$
$S=1.19$
2115 reflections
160 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0582 P)^{2}\right. \\
&+0.5434 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA_{,}^{\circ}\right)$.

S1-C7	$1.733(3)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.401(3)$
S1-C9	$1.740(2)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.309(3)$
F1-C1	$1.358(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.375(3)$
O1-C11	$1.214(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.370(4)$
N1-C7	$1.360(3)$		
C7-S1-C9	$88.76(11)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$110.8(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 1$	$0.87(3)$	$2.27(3)$	$2.653(3)$	$107(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$	0.93	2.30	$2.919(4)$	123
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{O} 1$	0.96	2.40	$3.018(4)$	122
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(3)$	$2.18(3)$	$3.010(3)$	$158(3)$
$\mathrm{C} 12-\mathrm{H} 12 C \cdots \mathrm{~F} 1^{\mathrm{ii}}$	0.96	2.33	$3.165(3)$	144

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
All H atoms were located in a difference map. The H atom on N 1 was refined isotropically. All other H atoms were placed geometrically in ideal positions and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}$ (methyl C), or $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for CH groups.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, B. M., Kasim, N. A. \& Akhiar, E. (2005). Acta Cryst. E61, o1478-o1479.

